LOCAL YIELDING AND EXTENSION OF A CRACK UNDER PLANE STRESSt
G. T. HAHN and A. R. ROSENFIELD}

The size of locally yielded regions, the stress distribution, and displacements attending a crack in
tension under plane stress have been calculated by extending the work of Dugdale and others. Methods
have been developed to take work-hardening and unloading into account. The displacements and
plastic.zone sizes measured in edge-slotted silicon steel coupons are found to be in agreement with cal-
culations. Conditions under which plane stress or plane strain are dominant in these edge-slotted
specimens have also been determined. Finally, Irwin’s fracture-toughness parameter and the conditions
for crack extension are formulated in terms of basic material parameters consistent with experiment.

DEFORMATIONS PLASTIQUES LOCALES ET EXTENSION D'UNE FISSURE EN
ETAT PLAN DE CONTRAINTES

Les auteurs ont calculé, en prolongeant les calculs de Dugdale et d’autres chercheurs, la dimension
des zones ayant subi une déformation plastique localisée, la distribution des contraintes et les défor-
mations dans le voisinage d’une fissure sous tension en état plan de contraintes. Ils ont développé une
méthode de calcul permettant de tenir compte de la consolidation et de l'effet de déchargement. Les
déplacements et les zones déformées plastiquement relevés dans une éprouvette d’acier au silicium
entaillée, ont été trouvés en accord avec les résultats du calcul. Les auteurs ont également déterminé
dans quelles conditions 1’état plan de contraintes ou 1’état plan de déformation domine dans une
éprouvette entaillée. Finalement, le paramétre proposé par Irwin pour chiffrer 'aptitude d'un métal
& résister & la propagation d’une rupture, et les conditions d’extension d'une fissure sont exprimées en
fonction des paramétres basiques du matériau qu’on peut tirer de I'expérience.

LOKALES FLIESEN UND AUSDEHNUNG EINES RISSES BEI EBENER SPANNUNG

Durch Ausdehnung der Arbeit von Dugdale u.a. wurden die GriBe lokaler FlieBgebiete, die Spannungs-
verteilung und die mit einem Riss unter Last bei ebener Spannung verbundenen Verschiebungen
berechnet. Es wurden Methoden entwickelt zur Beriicksichtigung von Verfestigung und Entlasten.
Die an spaltférmig geschiltzten Silizium-Stalh-Proben gemessenen Verschiebungen und Ausdehnungen
der plastischen Zonen stimmten mit den Rechnungen iiberein. Es wurden ferner die Bedingungen
bestimmt, unter denen in Proben dieser Art ebene Spannung oder ebene Verzerrung vorherrschend
ist. SchlieBlich werden Irwins Parameter fiir die Bruchstirke und die Bedingungen fiir die Rissaus-
dehnung durch fundamentale Stoffparameter in {7bereinstimmung mit dem Experiment ausgedriickt.

INTRODUCTION

Progress in understanding fracture has been handi-
capped by the fragmentary picture of stress and strain
in front of a crack. Experimental measurements have
proven difficult. The elastic-stress-field solutions of
Inglis® or Irwin® are not valid close to and within
the very important yielded region generated at the
crack tip. The Irwin® and Wells® treatment, which
does take yielding into account, is a reasonable
approximation only when the yielded region is small
relative to the crack length. At the same time, the
quasi-rigorous solutions of elastic-plastic behavior!4-%
are complex and unwieldy; so far, practically no in-
formation on the stress and strain within the yielded
zone attending a crack in tension has been developed
in this way. Thus, it may be useful to compromise
some rigor for a simpler tractable approach, par-
ticularly to deal with added complications, such as
work hardening and rate-sensitive flow. For example,
Hult and McClintock’st”? solution for a notch sub-
jected to torsion, a case which is easier to treat, has
shed useful light on the situation in tension.®:®

+ Received June 22, 1964; revised August 19, 1964.
¥ Metal Science Group, Battelle Memorial Institute,
Columbus, Ohio.
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Knott and Cottrell 19 were able to exploit the idealized
slip band model of a crack under pure shear. devel-
oped by Bilby et al.'V in their study of notched
bend specimens.

This paper extends the model of a crack in tension
under plane stress developed by Dugdale.%® and
compares its predictions with experimental results.
The model, baged on a mathematical development of
Muskhelishvili,?® embodies the following assump-
tions:

(1) The material outside the plastic zone is elastic.

(2) The material within the zone is rigid-perfectly
plastic,

(3) A Tresca yield criterion is obeyed,

{4) Yielding is confined to a narrow wedge-shaped
zone.§

Dugdale demonstrated that the plastic-zone size
predicted in this way is consistent with the behavior
of mild steel. Goodier and Field 1 used the model to
calculate crack-tip displacements. Results of further
work described in this paper show that silicon
steel—even in the form of reasonably thick plates
—can exhibit a zone similar to that presecribed by

§ This may be a consequence of the Tresca criterion.
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the DM (Dugdale-Muskhelishvili) model. Measure-
ments of plastic-zone size and the crack-tip displace-
ment both on-load and after unloading are shown to
be in accord with theory. The results also provide
insight into the mechanism and conditions favoring
the DM zone. The stress gradient in front of the plastic
zone is calculated and methods of treating work-
hardening and unloading are explored. Finally,
implications of the DM model with respect to fracture,
particularly crack extension and fracture toughness,
are discussed.

PROPERTIES OF THE DM MODEL

Uniform internal tension

The DM model is illustrated in Fig. 1(a). It con-
sists of a slit with an initial length 2¢ representing a
crack in a semi-infinite plate of thickness ¢t. Under the
action of the nominal stress 7', the slit extends to a
length 2a and opens, but is partially constrained from
extending and opening by a uniformly distributed
internal tension of intensity § acting only on parts of
the slit, from # = ¢ to * = +a, and p = (& — ¢).}
Dugdale’s basic argument is that if § is equated with
Y (the yield strength of the material), the internal
tension closely simulates the local support derived

zone

Fro. 1. Model of Dugdale—Muskhelishvili erack; {a) and
{b} the DM model, {¢) the actusal crack.

8 is expressed as force per unit length corresponding to
unit plate thickness. It is analogous to engineering stress,
while ¥ is true stress.
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from similarly shaped wedges of yielded material,
which are quite like zones observed experimentally
(Fig. 1(c)). According to the Dugdale hypothesis,
region 1245 (Fig. 1(b)) represents the partially re-
laxed crack, and regions 123 and 456 represent the
attending plastic zones. Consistent with this idea, the
plastic zones extend as long as the stress at points 3
and 6 (the elastic—plastic boundary) exceeds Y. By
imposing this condition on the stress-field solution
(see Appendix, Section 1), Dugdale was able to formu-
late the plastic-zone size in equilibrium with the
applied stress:

=2 sinzg (1)

P> e~

or

S

=sgecf — 1

(2)

T
where f§ = ;T—Y . The same relations have been derived

for the case of a crack in pure shear and torsion.(?

Although Dugdale derived the stress-field solution
{equation A-1), he did not publish the result or
evaluate it numerically. We programmed this
equation for a computer and found that the stress
gradient for a wide range of applied stress levels is
described by the equation (see Appendix, Section 2},

T sin 28 )
o= T + > arctan |——22F
e + B areman (62“ —cos 28/’

where o is the stress in the y direction, f = »T/27,
and o = are cosh z/a. Specific gradients are illus-
trated in Fig. 2. The DM plastic zone extends farther
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than the zone derived from the Irwin® and Wells®®
assumptions, and about twice as far as the value given
by the Inglis elastic solution (the {xz — c)/c value
corresponding to Y). It is one-fourth the size of a
completely relaxed circular plastic zone.!® The DM
elastic-stress-field is perturbed {relative to the elastic
solutions) a distance 2p in front of the crack. Beyond
a distance 2p, the DM and Inglis solutions converge.
The DM model gives the steepest stress gradient near
the plastic zone, approaching infinity as x —a. It
would appesr that material just ahead of a moving
crack is subjected to stress rates approaching shock
loading.

The on-load displacement of a point on the slit wall
{see Fig. 1(b)) has been worked out by Goodier and
Field™® for the DM model,

¥ sin (8 — 0)
v = ;—E‘ (COS 61ln m
(sin f + sin 0)3)
+ cosﬁln(sinﬁ — sin 6)2 @

where v is the displacement in the y direction, E is
Young’s modulus, § = arccos z/a, and Poisson’s ratio
is taken as 1/3. Figure 3 shows that normalized
displacement—distance curves for three widely sepa-
rated values of 7'/ Y are similar. Goodier and Field®
also derived an expression for the displacement at the
crack tip (Fig. 1(b)),

4Y
= —;—E‘cln sec f,

(6)

Ve

where v, = v,.,. Equation (5), presented graphi-
cally in Fig. 4, is almost identical to the analogous
expression derived by Bilby et al.,®" for the case of

shear. At low stresses (7T/Y < 0.8}, equation (5)
reduces to
wcT?
v\‘: = 2 EY (6)
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In principle, the operation of the model can also be
reversed to simulate unloading. When the load is
removed, the opened slit tends to contract and close
in response to the internal restoring stress field. But
this is now opposed by the enlarged yielded region
resisting with a pressure, — Y, acting on the crack
walls from ¢ < 2 < a. Under these conditions, the
slit contracts as long as the stress at = t-a exceeds
| Y.

As a useful approximation valid in the vicinity of
the crack tip, the restoring stress field can be replaced
by a uniform applied stress —T'p, such that 75 will
produce in an unconstrained slit {(i.e. S == 0) of length
2a the on-load value of v, given by equation (5). As
shown in Appendix, Section 3,

?173 = 2 cot flnsec

w

Q)

The effect of superpositioning T» on T is equivalent

to & tension (T — T') acting on a virgin slit, 2¢, and

this then describes the off-load state in the vicinity of
the crack tip:

.y,  Inseef

v, Insecf

8

where v," is the off-load crack-tip displacement, and
B =m(T — Tg)2Y. Values of v/ and the ratio
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Fia. 4. Influence of stress level on v, and v,” the on-load.
and off-load cracktip displacement and the ratio v,’jv,.

v, [v, calculated in this way are reproduced in Fig, 4.
The results indicate that v, /v, approaches 0.25 at low
stress and 1 at high stress but is relatively invariant
(e.g. 0.25-0.40) in the range T/Y = 0-0.85.
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Nonuniform internal tension

The calculations outlined so far are valid for a
uniform internal tension § (see Fig. 5(a)). This is not
an unreasonable model for metals provided v, is small
and the rate of strain hardening is not an important
factor. Otherwise, corrections must be applied for (1)
the reduction in sheet thickness consistent with plastic
deformation at constant volumet and (2) strain

S

c=a cos 3,
ctp=acos B,
cHptp=a

.
$-5¢

Tslc

(e)

Fie. 5. Examples of different distributions of the
internal tension, S.

hardening. For example, if deformation is confined
to shear on a single 45° slip plane, displacements in the
y direction must be accompanied by a reduction in the
load-bearing cross section of the sheet given by 2wv.
Consequently, if Y’, defined as the true flow stress, is
constant (e.g. Y’ = Y), the internal tension S,
opposing the opening of the crack, must diminish
from a maximum value Y at x = a,

mmzy[y—@?} (9)

1 In considering displacements and strains, the following
simplifying assumptions consistent with constant volume
deformation and the DM model are made:

€= £, =£,6=0; v =0, =09,v, = 0;

o] 0
vy = f &(y) dy = { &.(y) dy.
0 0
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This is shown schematically in Fig. 5(b). If the mate-
rial also strain hardens, then: (1) Y’ = Y'(¢) where
¢ is the strain and (2) the displacement is distributed
over a finite volume—a spectrum of strains is now
encountered. The reduction in the load-bearing cross
section is (1 — ¢), and the maximum reduction
(at ¥ = 0) corresponds to the maximum strain ¢*,

S(x) = Y'(e*)[1 — &*] (10)

Several points, therefore, emerge about the variable-
internal-stress case:

(i) To establish S(z), the distribution of strain,
£(y), must be known. The model can only provide
displacements; strains must be inferred from other
considerations or measured experimentally. For ex-
ample, the displacement can be expressed in terms of
1l the width of the plastic zone, and £ the average
strain:

20 =l (11)
Experiments to be described indicate I ~¢. Since
£~ £*[2,
te*
v~ (12)

to a first approximation, and since v and x are related
by an equation analogous to equation (4),

&@~rmb—$} (13)

If the internal stress distribution can be defined, then,
as shown in Appendix, Section 4, the corresponding p,
o(z), and v(z) can be calculated.

(ii) Equations (10) and (13) show that the form of
S(z) is similar to a load elongation curve. Since strain
hardening and the variation of » with z are essentially
parabolic, the initial part of S(z) is linear (see Fig.
5(c)). A two-step function (see Fig. 5(d)) is thus a con-
venient approximation of small yielded zones. This
approximation, together with equation (13), was used
to estimate the influence of work hardening on plastic-
zone size for silicon steel (see Appendix, Section 5).
The results, presented graphically in Fig. 6, indicate
that the influence of strain hardening becomes
significant for long cracks and high stress levels.

Another simple approximation, which takes into
account the effect of work hardening on v, is to
modify the definition of f’ in equation (8) by replacing
Y with 8, = 8, _,,, the flow stress corresponding to
the maximum strain at the crack tip. This simple
approximation neglects the Bauschinger effect.

The form of S(z) at high stress levels is illustrated
in Fig. 5(e). In this case, the instantaneous average §
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can serve as a useful approximation of the distribution,
e.g. equation (2),

where

(14)

and U and F are the ultimate tensile strength and
fracture strength, both expressed in terms of engineer-
ing stress.

(iii) The shape of the plastic zone consistent with
the mechanism of deformation will not necessarily

correspond with the shape prescribed by the DM
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the geometry of the DM model—replacing the slit by
some other shape—but the refinement may not
warrant the added compiications.

The main problem to be resolved by experiment%
is the extent to which H._pyluxlm&uﬁi‘xs inherent in the
DM model impair the accuracy of its predictions.
Thiodalall2) hag alrvaady shawn that the mo

Dugdale®® has already shown that the mo
reasonable picture of the plastic-zone size in mild stee
The experiments described in the next two se
show that measurements of plastic-zone size and
crack-tip displacements for silicon steel are also in
accord with the theory.

adsl oives a
UL ZaVOs @

stee
tlon

EXPERIMENTAL PROCEDURE

Studies of locally yielded zones were carried out on
large notched test coupons fabricated from 39, silicon
steel (Si 3.31, C 0.04). The coupons (overall length
8 in., witha 4 X 2.5 in. gage section, and with centrally
located edge slots 0.25 in. deep and 0.006 in. wide),
ﬂerlvea Irom 1‘ ln 'DnlCK plame prekuSly warin roueu
409%, and stress relieved, were machined to thick-

£rnmr N OO 4" N NTT 30n Afian maonhining tha
IroNl V.4o& U0 V.wii i, AIter MAaciumning, uie

nesses
coupons were recrystallized at 875°C and slowly
cooled. The test specimens were loaded to various
stress levels, held at maximum load for about 5 sec,
unloaded, and later aged for 20 min at 150° C to
decorate the dislocations. The stress—strain character-
istics of this material in the annealed condition are
shown in Fig. Al. The shape of the stress—strain
curve is similar to that of a mild structural steel, but
the strength level is higher, the lower yield stress
Y = 62,400 psi. A complete summary of tests per-
formed is given in Table 1.

Two different techniques were employed to reveal
the plastic zone and the strain distribution within the
zone. The off-load transverse strain field was photo-
graphed on an interference microscope. The inter-
ference pattern with isostrain contours and the

Aol ML Lo dakan indo gnoceid heoam 00t o o Tin g cdon o o B 1a fen Qaroanle @ KR oo oha
moGel. 4igiis bULl u UG VA ULl 111U avvuully Uy muuuyl.us CulLlL Spuuuuxg Sulalll Pl VLT 101 O HIU -Ju T SIHUWIL
TaBLE 1. Summary of notch tests performed
Specimen Thickness, Zone p—Measured p—Calculated p—Calculated §

number (in.) T|Y type (in.) (in.) (in.)
8-57 0.200 0.52 Hinge)| pH|| = 0.072 0.12 —
S-60 0.195 (.81 Transition p” = 0.54 p = 0.28 0.58 0.40
S-58 0.232 0.90 45°-Shear p% > 1401 p = 0.60 1.35 1.20
S-47 0.165 0.75 Transition
S-48 0.128 0.90 45°-Shear
S-53 0.060 0.78 45°-Shear p = 0.38 0.48 0.44
8-55 0.017 0.52 45°-Shear p =010 0.12 0.10
8-56 0.017 0.81 45°-Shear p = 0.39 0.58 0.40

1 Although, in this sample, yielding was predominantly of the 45°-shear type, traces
ple, y. g p y

character were observed to the distance indicated.
3 Calculated from equation (1) assuming no work hardening.

of plastic deformation of a hinge

§ Calculated taking work ha.rdenmg into account (Fig. 6 and Appendix, Section 5).

]| See Fig. 11 for definition of p#
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Fic. 7. Interference pattern with isostrain contours (top left corner) and the corresponding plastic
zone revealed by etching, both for Sample 8-56 (¢ = 0.017 in., T'/Y = 0.81). Xx17.5.

41— MN
Sample  2vc=fezdy
$-55  1.4.10%n
$-56  3.0.10%n
$-53  5.1.10%n
3
® / -56
w
, k\
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ot" A | -
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Fic. 8. Crack-tip strain profiles determined from inter-

ferometric measurement.

in Figs. 7 and 8. The strain profile was used to
calculate v’ (v’ = f £, dy) .
0

Following this, the surfaces of the test pieces were
electropolished and etched, utilizing the Morris pro-
cedure,1® to reveal the plastic zone, and then were
reground to various depths, polished, and re-etched
to delineate the zone on various interior sections.
This method of etching, based on the preferential
attack of individual dislocations, results in a gradual
darkening of the surface as the strain increases to
1-29,. Beyond 29, strain the etching response
diminishes, and above about 59, strain the material
studied here was not attacked, probably because
decoration was incomplete. Consequently, the tech-
nique revealed both the extent of the plastic zone and,
to some degree, the distribution of strain within the
zone. The change in etching response is illustrated in
Fig. 7 which shows a highly strained but unetched
region close to the notch tip. A displacement », can
be calculated from I, the width of the etched region,
and £, an average strain, deduced from the etching
response, see equation (11). Since v, = v 4+ (v — ¢'),
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(a) (b)

(c) (d)

Fia. 9. Plastic zones revealed by etching the surface and midsection of notched coupons:
(a) and (b) Sample $8-57 (¢t = 0.200 in., T/Y = 0.52) (e} and (d) Sample 8-60 (¢ = 0.195 in., 7'/Y == 0.81)
(e) and (f) Sample S-58 (¢t = 0.232 in., 7)Y = 0.90)
Oblique illumination. X 6.08.
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the sum of absolute values of displacement incurred
when the load is applied plus the reverse displacement
produced by unloading, it can be combined with o'
from the interferometric measurement to give v, the
on-load displacement,

o v, + v

(15)

EXPERIMENTAL RESULTS

The interpretation of plastic zones revealed by
eteching is complicated by the fact that yielding con-
current with loading is superimposed on reverse flow
during unloading. Still, a reasonable picture emerges
of the effect of stress and plate thickness on the
character of the plastic zone. Three types of plastic
zones are observed (see Figs. 7, 9, and 10):

1. Hinge-type zone. At low-stress levels the zone
extends normal to the plane of the crack, and its
form is essentially the same on all interior sections
(see Figs. 9(a and b)). The shape of the zone is con-
sistent with the idea that yielding occurs essentially
by flow about hypothetical plastic hinges®” (see

t= plastic zone size

ACTA METALLURGICA, VOL. 13, 1965

Fig. 11). The hinge-type zone is also qualitatively in
accord with Jacobs zone-shape caiculations for plane
strain.®

2. 45° shear type zome. At high-stress levels the
zone is projected in front of the crack in the direction
parallel to the crack plane. As shown in Figs. 7(b),
9(e, ), 10(d, e), this form bears a striking resemblance
to the DM model. Etching the interior sections
reveals that the mechanism of yielding in this case is
shear on slabsg inclined ~45° to the tensile axis,
similar to necking of unnotched sheet coupons (see
Fig. 11). As a consequence of the 45°.shear nature of
the yielding, the zone width on the surface is approxi-
mately equal to the plate thickness; this is shown in
Figs. 10(e) and 11(c).

3. Transition zone. At intermediate stresses, the
zone appears in & state of transition between the
hinge type and the 45°-shear type (see Figs. 9(c, d},
10(a, b)).

Measurements of the zone size (summarized in
Table 1) are in accord with previous experience. Con-
sistent with Tetelman,® ¥ (see Fig. 11) for the

(a)

(b)

(e)

(d)

Fre. 10. Plastic zones revealed by etching the surface and the midsection of notched coupons:

(a) and (b) Sample 8-47 (¢ = 0.165 in., T/¥ = 0.75)

(¢} and (d) Bample S-48 (¢ = 0.128 in., T/Y = 0.90)

Oblique illumination. x9.5,
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TasLe 2. Comparison of measured crack-tip displacement values with predictions of the DM model
Derived from measurementst Calculated
Sample
number Ty L. Eco oo v, Ve v’} v, § o)
(in.) o/ (10~%in)  (10-4in.)  (10~4in.)  (10~%in.)  (10~*in.)  (10~%in.)

8-55 0.52 0.026 3-4 4-6 0.7 2-3 0.8 0.9 2.5

S-56 0.81 0.044 4-7 10-14 3.4 6-9 3.1 3.7 8.1

S-53 0.78 0.063 3-4 18-24 2.1 6-7 2.6 3.1 7.0

+ The quantities I,,, &, and v,, are the average width, strain, and displacement, respectively, immediately in front of the
slot as revealed by etching. v,, = #l,,&,,. v.’ is derived from the interference pattern as described in the text. v, is calculated

from v»,, and v,” via equation (15).

1 Calculated from equations (7) and (8) using: Y = 62,400 psi, £ = 30,000,000 psi, and ¢ = 0.250 in.
§ These values of the off-load displacement were calculated taking work hardening into account as described in paragraph

(1) on p. 287 and p. 288.
| Calculated from equation (5).

hinge-type zone of Sample S-57 is described by

H ] T
p—~—(secw— —1)

; 3 (16)

The extent of the 45°-shear-type zone of Sample 8-55
is in good agreement with equation (2). Values for
Samples S-56, S-63, S-48, and S-58 are somewhat
smaller than predicted. Although better agreement
is obtained when work hardening is taken into account
(see Table 1), a discrepancy remains. This could be
related to departures from the infinite plate solution
(likely when the plastic zone covers more than
20-309, of the sample cross-section area) and to the
fact that the DM model only approximates the shape
of real zones.

The results summarized in Table 2 represent the
first attempt to check displacement values predicted
by the DM model. As shown, both the onload and
off-load crack-tip displacement values derived from
the etching response and the interferometric measure-
ments are in reasonable accord with the theory. Work-
hardening corrections do not improve the agreement
in v, values for Samples S-53 and S-55; in both cases
the maximum strain is small, and the Bauschinger
effect could be more important than strain hardening.

On the basis of these results, it appears that the
DM model offers a useful description of (a) shape,

.
gect™® P

-
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B

(o) Hinge - Type (b) 45° Sheor~Type

F1c. 11. Schematic drawing of the type of deformation

associated with (a) the hinge-type and (b) the 45°-shear-
type plastic zone.

(b) size, and (c) displacements of a 45°-shear-type
plastic zone. Two points bearing on the general
applicability of the model should be kept in mind:

(i) First, the state of stress must be substantially
plane stress. The 45°-shear mode will be constrained
until the stress acting on regions a distance /2 above
and below the crack centerline, y = 0 (see Fig. 11),
exceeds the yield stress. Yielding at this distance
first becomes possible when

i

p > -

5 (17)

and this condition should approximately mark the
beginning of the transition from the hinge-type to the
45°-shear-type zone. The configuration begins to
approach a narrow, tapered DM-model zone when

p ~ 4t (18)

since the zone width is ~¢. Limiting conditions for
the various types of zones, formulated by combining
equations (18) with (2) and (16) with (17), are sum-
marized in Table 3. These conditions are consistent
with the experimental observations.

(ii) The 45°-shear zone has, so far, only been
observed in steel. In fact, the Stimpson and Eaton®
theoretical calculations for plane stress do not predict
a 45°-shear zone, but a shape with much more “hinge”
character. Even when the bulk of the deformation
is of the 45°-shear type, the silicon steel exhibits
traces of deformation at distances y > /2 (see Fig. 7

TaBLE 3. Limiting conditions for zone occurrence

Condition Dominant zone

Hinge type
Transition

45°-shear type
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and p¥ for Samples S-60 and S-58 in Table 1), in
keeping with the calculations.

The discrepancy between the Stimpson and Eaton
calculations and the behavior of steel may be related
to the choice of yield criterion (von Mises, as opposed
to Tresca, in the case of the DM model), or to the yield
point effect.1® Until this point is resolved, the safest
assumption is that the 45°-shear-type zone is one of
several modes of relaxation possible under plane
stress.

IMPLICATIONS FOR FRACTURE

Since it is both quantitatively meaningful and
simple to handle, the DM model is especially useful in
dealing with fracture. It can approximate the stress—
strain-rate environment in front of a propagating
crack.® It may have application to fatigue, since
it can deal with loading and unloading. Finally, the
DM model can be used to treat crack extension. In
this case, the predictions of the model complement
accepted theory and experiment and for this reason are
outlined below.

Equation (8), for the crack-tip displacement when
T|Y < 0.6, can be written

7 (2chE)1’2

e

(19)

and, in this form, compared with Irwin’s basic con-
dition for crack extension,
K

L

(me)iP2 (20)

In this case, T* is the critical stress for crack exten-
sion, and K, (the fracture toughness) is an empirical
measure of the material’s resistance to cracking.®
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The fact that equations (19) and (20) have the same
form implies that K, is related to v, and can be
calculated directly,

K, = (20 *YE)'? (21)

where v, * represents the crack-tip displacement at
crack extension.

The connection between v,* and K was first recog-
nized by Wells,® and an expression similar to
equation (21) has been derived by Bilby et al.(1!

Since K, and Y are material constants, the quantity
v,* must also be constant. The constancy of v, * can be
related to invariance on the part of ¢*, a critical
maximum crack-tip strain, via equations (11) and (12).
Two mechanisms of crack extension can be related
to a specific strain level:

1. Ductile fracture. Ductile fracture by the process
of voids coalescing®® might be expected to occur just
in front of the crack tip when the maximum strain at
this point reaches a level comparable to the reduction
in area of an unnotched coupon.

e* = RA (22)

The crack then grows a small increment, and the
*

Oe, )
>0,

ac 7Y%
see equations (5) and (12). Since the strain at the
crack tip is already beyond the capabilities of
the material, an instability is inevitable. Locally, the
origin of such failures is ductile fracture, but they
are frequently classified as brittle when the failure
stress is below the stress level for general yielding.

As shown in Table 4, K, values, calculated directly
from equations (12), (21) and (22), for 4330 steel and

maximum strain must increase further (

TABLE 4. Comparison of measured and predicted values of the fracture toughness K, and gross failure stress T'*

Critical K., (ksi 4/ in.) T#*, (psi)
Material crack length,
(inch) Measured 2% Calculated § Measured ‘2% Calculated ||
A. Low stress levels, T/S < 0.7
43301 2-10 300 420
2219-T87% 5-13 110 99
B. High stress levels, T/S > 0.79
43307 0.5 190,000 200,000
2219-T87%1 0.8 57,000 58,000
2219-T87% 1.4 49,000 53,000

1 4330 steel data:!?%

t = 0.140 in., E = 30,000,000 psi, Y == 189,000 psi, U = 223,000 psi, S = 206,000 psi, F = 178,000 psi, R4 = 45Y%,

&g, =6%.
1 2219-T87 aluminum data:(?%

¢ = 0.100in., E = 11,000,000 psi, ¥ = 59,000 psi, U = 69,000 psi, § = 64,000 psi, F = 56,000 psi, RA = 30%, &, = 7%.

§ Equations (12), (21) and (22).
|| Equations (12), (23) and (24).
U

g3=%
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2219-T87 aluminum are reasonably consistent with
experiment,®® considering the approximations made.
If the relation between v * and ¢,* were known more
precisely, even better agreement might be obtained.

2. Plastic instability. Another possibility is that the
plastic zone become unstable first, and that ductile
fracture (and crack extension) follows in the wake of
the instability. This idea, which was recently pro-
posed by Krafft,®) can be formulated using the DM
model. As shown in the Appendix, Section 6, the
instability condition is approximately

(57>

(sec gg — 1) [(21;—1) (sec g) (ta.n 225177)] - (23)

Figure 12, a plot of the criterion of equation (23),
shows that considerable unloading is tolerated at low
stress levels (e.g. T/§ < 0.7), but the plastic zone
becomes unstable as a result of a small decrease in
S, when the stress is high (e.g. 7/8 > 0.7). Con-
sequently, plastic instability is the more likely
mechanism of crack extension at high stress if the
material is reasonably ductile.

According to this picture, v * and ¢ * associated with
plastic instability (and failure) decrease as the stress is
raised. Since equation (21) is not valid at high
stresses, a simple relation among K,, T*, and ¢ cannot
be derived. However, the value of ¢,* at instability
can be estimated (see Appendix, Section 6),

ec*meu—FA/H(S_SSc)

U—F

(24)

-1
where H = (¢, — ¢,)? ( ) ,and U and F

05

\

04 AN

N\

03
o]
| [k
0
0.2 \\
0.1
0
(9 02 0.4 0.6 08 1.0

/8
Fia, 12, Criterion for plastic instability of a DM zone.
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are the ultimate tensile stress and fracture stress
(engineering stress), and ¢, and ¢, are the correspond-
ing strains (expressed as reduction in area). Equations
(24), (12) and (23) together fix the value of 7' at
instability. As shown in Table 4, failure stress values
calculated in this way are in good accord with actual
measurements and consistent with the apparent
decrease of K, observed at high stress levels, i.e.
T|Y > 0.8.2
CONCLUSIONS

1. For edge-slotted silicon steel, local yielding is
predominantly of the plane strain plastic-hinge type
until the extent of the yielded zone is about equal to
the sheet thickness. Further deformation, under
plane stress conditions, proceeds by a 45°-shear mode.

2. The general shape of the 45°-shear zone can
approach that of the DM (Dugdale-Muskhelishvili)
crack model. Predictions of this model are in agree-
ment with measured zone size and displacement
values for silicon steel.

3. The DM model offers a relatively simple ex-
pression of the stress gradient and can be used to
estimate effects of work hardening and unloading.
Calculations and experiments indicate that the off-
load cracktip displacement approaches 25%, of the
on-load value at low stress.

4. The DM model can be used to formulate the con-
ditions for crack extension. Failure stress values and
the fracture toughness, K, calculated in this way from
first principles, are in accord with experiment.
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APPENDIX
1. Previous work
Using Muskhelishvili’s®® method, the normal
stress, ¢, in front of a slit subjected to the stress
system shown in Fig. 1 is found to be

o(y=0 = (T — 2/5;1/) coth o

zr>a ™

sin 28 _Q_ej} (A1)

1
71 — - arctan — ot _
+ { ﬁarc o os 28 — > 48

where 7T = applied stress,
B = cla, cosh o = z/a,

Y = yield stress, cos

" cosh
= M—of (3[sinh «]? 4 cosh o« sinh & — 1)
(sinh )3
d lea(eZa — o8 25)‘J
’ 2 1 _ A
+ 4, (coth a) I: n2f
g’ cos . i
— —— (3[sinh «]% + cosh « sinh « — [cosh «]?)
(sinh a)?
_ Og'e"cos B l:l dg'(1 — €** — 2[sin /3]2):|
(sinh o)? 2sin f ’
5. — 4 sin 28 ¢*
47 (€2 — cos 2B)% + (sin 28)2°
and
, 4 sin B(1 + )
dg =

(1 + e®*)2 — (2¢* cos B)%

The other terms of equation (Al) are defined in Fig. 1.
To avoid the infinity at « = 0 (x = a), the coefficient
of coth « must vanish:

T

‘3: —

3y = arecos (c/a)

(A2)

2. Stress analysis for uniformly loaded slit

Equation (Al) was programmed for a digital com-
puter and ¢ and @ determined for 792 combinations
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of o and §. It was found that @ was negligibly small,
except for values of « so small as to introduce round-
ing off errors in the computer (r/a < 1.0002 and
T]|Y < 0.006). It can also be shown by series
approximations that ¢ approaches 0 as o approaches
0. We have concluded that @ can be ignored, and that

1 in 2
g:l—{—HarctanI sin 28

T B le2* — cos 28 (43)

3. Displacement

The displacement at any point on a slit under a
uniform tension when the slit is not restrained by an
internal stress is

k4 1)aT sin 6
v = (k + 1)aT sin 6 (A4)
4u
k is the function of Poisson’s ratio, v, where k =
(3 — #)/(1 -+ ») for plane stress. The displacement at
a distance, ¢, from the center of such a slit is

_ (k+ 1)cT tan 8
= i
since c/a == cos 3, and 6 = f.

The displacement equations for the relaxed slit of

the DM model have been calculated by Goodier and
Field," and are found in the body of the paper. In

(A5)

[



HAHN axp ROSENFIELD: LOCAL YIELDING AND CRACK EXTENSION

particular, the critical displacement for an internally
stressed slit (see Fig. 1(a)) is

(k+ 1)y
= —"" _Ins

. ec B (AB)

<
To determine the stress, T,, producing the same dis-
placement in a slit of the same length in the absence
of an internal stress, (A6) is substituted into (A5)

Tg

2
—=* = ~cot flnsec (A7)
Y =

4. Stress and plastic-zone size for arbitrarily loaded slit

Since all terms in the Muskhelishvili formulation
which involve derivatives of §, and dy do not appear
in equation (A3), expressions for a slit subjected to any
arbitrary combination of internal and external loads
can be derived easily. For example, the stress
distribution in front of the slit of Fig. 5(d) can
be found by the summation of three solutions (¢ =

) + 0y + 03):
(1) External tensile stress, g, = T cotha  (A8)

(2) Uniform internal pressure, —S,, applied to the

regions

fal > x| > |e| : 0=

[coth & — 1] + 6.4(131)}

(A9)

{3) Uniform internal pressure (S, — Y) applied to
the regions

la| > x| > (le] + |py| ): o3
S§,—-Y
= = —— {2, leoth o« — 1] + &4(,)}
sin 28 )
€% — cos 28

Setting the coefficient of coth o equal to 0, results in
the restriction,

(A10)

where 9,4 = —2 arctan (

= (B — B8, + .Y (All1)

and the solution

—-1+6“(ﬂ2) 8, —¥)—

6A(ﬂl)Sc
T T

(A12)

Keeping the same boundary conditions (§ = S,
at § = f,and § = Y at § = 0), but letting S(8) now
be an arbitrary function of f, equations (A8) and
(A9) can be added to ‘

1 Y
0y = ;J {2B[coth & — 1] + 8,4(B)} dS(B), (Al0a)
Se
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to give o and the restriction,

T Y
=S+ pase  au
Se
The displacements for an arbitrarily loaded slit can be
obtained by replacing Y in Equation (4) with

Y, 4~
ﬁl Se

5. A method of stmulating the effect of work hardening

Consider the material whose stress-strain curve is
given by Fig. Al(a). Assume that e, the strain at
the crack tip, is 8%,. For a given value of ¢ (0.08 in.),
the displacement at the crack tip can be calculated if
it is assumed v, = ¢¢/4 = 1.6 X 103in. For other
points in the plastic zone, the displacement can be
found from Fig. 3 and the relation ¢/e, = vfv,. Since
each strain will correspond to a flow stress on Fig.
Al(a), the tension—distance curve (Fig. A1(b)) can be
calculated for a given T/Y. For ease in further com-
putation, a two-step stress distribution, which simu-
lates the calculated one is found by matching areas A
and B (Fig. A1(b)) and the stress distribution in front
of the plastic zone, the plastic-zone size, and dis-
placements found by the method outlined in Section 4.

To determine the solid lines on Fig. 6, the displace-
ments (,) corresponding to the various strains were
calculated from equations (11) and (12) with ¢ =
0.08in. The two-step distribution was replaced by a
uniform distribution and 7'/Y found from Fig. 4.
Although each solid line was calculated for a specific
crack length and sheet thickness, it applies to any
specimen with the same ¢/t ratio (see equations (11)
and (12) and (A6)). Plastic-zone sizes for } in. cracks
in thicknesses other than 0.08in. were found by
determining ¢/t and interpolating between the curves
of Fig. 6.

ﬂdsﬂ

6. Plastic-zone instability

If the applied stress is held constant, but the tension
8§ (reflecting the yield stress of the material) is allowed
to vary, the rate of change of the equilibrium zone
size is given by

dlnp
dln 8

T
( =T 1)—1(7rT 11'Tt TI’T) Al3
—|sec & — —
28 2§ %025 Bnzy) (A1)
It is necessary to postulate a variable S when we con-

sider a zone loaded with nonuniform tension distribu-
tion, 8(x), which is to be represented by a uniform



306

(e+

)
average tension § = 1/p f "8 dx (see Fig. 5(e)). If

(4
the tension at the crack tip, §,, changes, the cor-
responding change in plastic-zone size is easily seen
to be
doln p -8
dlnS S -8,

(Al4)

If the stress-—strain curve is falling, i.e. 98,/0p < 0,
and §, < S, the rate of increase in plastic-zone size
predicted from equation (A13) may be larger than
can be tolerated by the conditions of equation
(Al4). Thus an instability results when

§—8, ( =T l)(ﬂT ﬂTt T
'—S—‘> SGC§§‘— -2—‘3'7—8802? an§—§

The crack-tip strain at plastic instability can be
estimated by noting that the relation between Y’
(true stress) and &£* (reduction in area) is approx-
imately linear beyond the point of necking. Together
with equation (10), this leads to a simple parabolic

)_1 (A15)
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relation between ¢* and the tension 8 (S is equivalent
to the engineering stress in a tensile test). The
equation of the parabola with a vertex at U, ¢,, and
passing through F, ¢, is

w55

where H = U(e; — ¢, )}/(U — F), and U, ¢,, and F,
g, are the engineering stress and strain at maximum
load and fracture, respectively. The following approx-
imation

(A16)

S—-8 U-8
s T U
is reasonable, particularly for high-strength materials

exhibiting little work hardening. Consequently, the
value of ¢ * corresponding to a critical value of

(S — SC) is
—

e~ e, + A/H (S;—S—Sf) .

(A17)

(A18)



