
LOCAL YIELDING AND EXTENSION OF A CRACK UNDER PLANE STRESS-f 

G. T. HAHN and A. R. ROSENFIELD: 

The size of locally yielded regions, the stress distribution, and displacements attending 8 crack in 
tension under plane stress have been calculated by extending the work of Dugdale and others. Methods 
have been developed to take work-hardening and unloading into account. The displacements and 
plastic-zone sizes measured in edge-slotted silicon steel coupons are found to be in agreement with cel- 
culations. Conditions under which plane stress or plane strain are dominant in these edge-slotted 
specimens have also been determined. Finally, Irwin’s fracture-toughness parameter and the conditions 
for crack extension are formulated in terms of basic material parameters consistent with experiment. 

DEFORMATIONS PLASTIQUES LOCALES ET EXTENSION D’CNE FISSURE EN 
ETAT PLAN DE CONTRAINTES 

Les euteurs ont calcul6, en prolongeant les calcula de Dugdele et d’autres chercheurs, la dimension 
dea zones ayant eubi une deformation plastique lo&i&e, la distribution des contraintes et les dbfor- 
mations dens le voisinage d’une fissure sous tension en &at plan de contraintes. 11s ont d&eloppQ une 
m&hode de calcul permettant de tenir compta de la consolidation et de I’effet de dbchargement. Les 
d6placements et lea zones d6form6es plastiquement relev6a dens une 6prouvette d’acier au silicium 
entailMe, ont Bt.6 trouv6a en accord avec les r&sultats du calcul. Les auteurs ont Qgalement d&ermin6 
dens quelles conditions 1’6tat plan de contraintea ou 1’6tst plan de d6formation domine dans une 
Bprouvette en&ill&e. Finalement, le param&re propos6 par Irwin pour chiffrer I’eptitude d’un m&al 
8. r&star 8. la propagation d’une rupture, et les conditions d’extension d’une fissure sont exprimees en 
fonction des param&res basiques du mat&au qu’on peut tirer de I’experience. 

LOKALES FLIEDEN UND AUSDEHNUNG EINES RISSES BE1 EBENER SPANNUNG 

Durch Ausdehnung der Arbeit von Dugdale u.8. wurden die GriiDe lokaler FlieRgebiete, die Spannungs- 
verteilung und die mit einem Riss unter Last hei ebener Spannung verbundenen Verschiebungen 
berechnet.. Es wurden Methoden entwickelt zur Beticksichtigung voq Verfestigung und Entlasten. 
Die an speltfijrmig geschiltzten Silizium-St&h-Proben gemessenen Verschiebungen und Ausdehnungen 
der plaetischen Zonen stimmten mit den Rechnungen iiberein. Es wurden ferner die Bedingungen 
bestimmt, unter denen in Proben dieser Art ebene Spannung oder ebene Verzerrung vorherrschend 
ist. Schliel3lich werden Irwins Parameter fiir die Bruchstiirke und die Bedingungen fiir die Rissaus- 
dehnung durch fundamentale Stoffparameter in ITbereinstimmung mit dem Experiment ausgetlriickt. 

INTRODUCTION 

Progress in understanding fracture has been handi- 

capped by the fragmentary picture ofstress and strain 

in front of a crack. Experimental measurements have 

proven difficult. The elastic-stress-field solutions of 

Inglis(l’ or Irwint2) are not valid close to and within 

the very important yielded region generated at the 

crack tip. The Irwint2’ and Wells(3) treatment, which 

does take yielding into account, is a reasonable 

approximation only when the yielded region is small 

relative to the crack length. At the same time, the 

quasi-rigorous solutions of elastic-plastic behavior(4-s’ 

are complex and unwieldy; so far, practically no in- 
formation on the stress and strain within the yielded 

zone attending a crack in tension has been developed 

in this way. Thus, it may be useful to compromise 

some rigor for a simpler tractable approach, par- 

ticularly to deal with added complications, .such as 

work hardening and rate-sensitive flow. For example, 
Hult and McClintock’s”’ solution for a notch sub- 

jected to torsion, a case which is easier to treat, has 
shed useful light on the situation in terision.(*~O’ 

t Received June 42, 1964; revised August 19, 1964. 
$ Metal Science Group, Battelle Memorial Institute, 

Columbus, Ohio. 

Knott and Cottrell’l”’ were able to exploit the idealized 

slip band model of a crack under pure shear. devel- 

oped by Bilby et aZ.“l in their study of notched 

bend specimens. 

This paper extends the model of a crack in tension 

under plane stress developed by Dugdale,(12’ and 

compares its predictions with experimental results. 

The model, based on a mathematical development of 

Muskhelishvili,(13) embodies the following assump- 

tions : 
(1) The material outside the plastic zone is elastic. 

(2) The mat,erial within the zone is rigid-perfectly 

plastic, 

(3) A Tresca yield criterion is obeyed. 

(4) Yielding is confined to a narrow wedge-sl~nl)ed 

z0ne.g 

Dugdale demonstrated that the plastic-zone size 

predicted in this way is consistent with the behavior 

of mild steel. Goodier and Field(14’ used the model to 

calculate crack-tip displacements. Results of further 

work described in this paper show that silicon 
steel-even in the form of reasonably thick plates 
-can exhibit a zone similar to that prescribed by 

$ This may be a consequence of the Trexw witerion. 
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the DM (Dugdale-Muskhelishvili) model. Measure- 
ments of plastic-zone size and the crack-tip displace- 
ment both on-load and after unloading are shown to 
be in accord with theory. The results also provide 
insight into the mechanism and conditions favoring 
the DM zone. The stress gradient in front of the plastic 
zone is calculated and methods of treating work- 
hardening and unloading are explored. Finally, 
implications of the DM model with respect to fracture, 
particularly crack extension and fracture ~ughne~, 
are discussed. 

PROPERTIES OF THE DM MODEL 

The DM model is illustrated in E’ig. l(a). It con- 
sists of a slit with an initial length 2c representing a 
crack in a semi-India plate of thickness t. ‘Under the 
action of the nominal stress T, the slit extends to a 
length 2a and opens, but is partially constrained from 
extending and opening by a uniformly distributed 
internal tension of intensity S acting only on parts of 
the slit, from x = fc to z = fa, and p = (a - c).t 
Dugdale’s basic argument is that if S is equated with 
Y (the yield strength of the material), the internal 
tension closely simulates the local support derived 

t t t T t t 

X 

I 

FIU. I. Model of Dugdal~Mus~eli~~i crsck; (a) and 
(b) the RM model, (c) the actual cr8ck. 

7 S is expressed as force per unit length corresponding to 
unit plate thickness. It is snrtfogous to engineering stress, 
while Y is true strees. 

1.2 1.3 I.4 l.6 1.6 I.? 

4 
FIG. 2. Comparison of DM stress gradienta with other 

solutions. 

from similarly shaped wedges of yielded material, 
which are quite like zones observed experimentally 
(Fig. l(c)). According to the Dugdale hypothesis, 
region 1245 (Fig. l(b)) represents the partially re- 
laxed crack, and regions 123 and 456 represent the 
attending plastic zones. Consistent with this idea, the 
plastic zones extend as long as the stress at points 3 
and 6 (the elastic-plastic boundary) exceeds Y. By 
imposing this condition on the stress-field solution 
(see Appendix, Section l), Dugdale was able to formu- 
late the plastic-zone size in equilibrium with the 
applied stress : 

P B - = 2 sin2 2 (1) 
a 

or 

P - = set /I - 1 (2) 
c 

where /l = rKz . The same relations have been derived 

for the case of a crack in pure shea+ and torsion.(‘) 
Although Dugdale derived the stress-field solution 

(equation A-l), he did not publish the result or 
evaluate it numerically. We programmed this 
equation for a computer and found that the stress 
gradient for a wide range of applied stress levels is 
described by the equation (see Appendix, Section 2), 

where a is the stress in the 31 direction, /? = 7rT/2 Y, 
and a = arc coah x/a. Specific gr8dient.s 8re illus- 
trated in Fig. 2. The DM plastic zone extends farther 
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Rsloiive Distance From Crack Tip(~) 

Fro. 3. Normalized displeoement-distance cmws for 
the DM model.(l-~*lo) 

than the zone derived from the Irwin(2) and Wells@) 
assumptions, and about twice as far as the value given 
by the Inglis elastic solution (the (Z - G)/G due 

corresponding to Y)_ It is one-fourth the size of a 
completely relaxed circular plastic zone.06) The DM 
elastic-stress-field is perturbed (relative to the elastic 
solutions) a distance 2p in front of the crack. Beyond 
a distance 2p, the DM and Inglis solutions converge. 
The DM model gives the steepest stress gradient near 
the plastic zone, approach~g infinity as x -+ a. It 
would appear. that material just ahead of a moving 
crack is subjected to stress rates approaching shock 
loading. 

The on-load displacement of a point on the slit wall 
(see Fig. l(b)) h as b een worked out by Goodier and 
Fieldo4) for the DM model, 

00~eln 
sin2 (#I - e) 

si.n2 (B + 0) 

(sin & + sin 6)s 

+ ‘?08~ln(sin~ - sin8)2 1 
(4) 

where v is the displacement in the y direction, E is 
Young’s modulus, 8 = arccos x/a, and Poisson’s ratio 
is taken as l/3. Figure 3 shows that normalized 
displacement-distance curves for three widely sepa- 
rated values of Tj Y are similar. Goodier and Field(“) 
also derived an expression for the displacement at the 
crack tip (Fig. l(b)), 

4Yc 
v, = x In set p, 

where vC = v(_~). Equation (5), presented graphi- 
cally in Fig. 4, is almost identical to the analogous 
expression derived by Bilby & &on for the case of 
shear. At low stresses (T/Y < O.B), equation (6) 
redlloes to 

?rc!P 

“=2EY (3) 

In principle, the operation of the model can also be 
reversed to simulate unloading. When the load is 
removed, the opened slit tends to contract and close 
in response to the internal restoring stress field. But 
this is now opposed by the enlarged yielded region 
resisting with a pressure, - Y, acting on the crack 
walls from G < x < a. Under these conditions, the 
slit contracts as long as the stress at x = fa exceeds 

IYI* 
As a useful approximation valid in the vicinity of 

the crack tip, the restoring stress field can be replaced 
by a uniform applied stress -T,, such that T, will 
produce in an uncoustrained slit (i.e. S = 0) of length 
2a the on-load value of vC given by equation (5). As 
shown in Appendix, Section 3, 

-==2ot/Hnsec~ TR 
Y w 

(7) 

The effect of superpositioning TR on T is equivalent 
to a tension (T - TR) acting on a virgin slit, 2e, and 
this then describes the off-load state in the vicinity of 
the crack tip: 

. v,’ lnsec#? -=- 
lnsec@ 

(3) 
v0 

where v,’ is the off-load crack-tip displacement, and 
@’ = w( T - T&/2 Y. Values of vl and the ratio 

T/Y 

FIG. 4. Influence of stress level on v, and u,’ the on-load 
and off-load cracktip displacement and the ratio v,‘/v.. 

v,‘jve calculated in this way are reproduced in Fig, 4. 
The results indicate that vb)/vo approaches 0.26 at low 
stress and 1 at high stress but is relatively invariant 
(e.g. 0.25-0.40) in the range T/Y = O-0.85. 



296 ACTA METALLURGICA, VOL. 13, 1965 

Nonuniform internal tension 

The calculations outlined so far are valid for a 
uniform internal tension S (see Fig. 5(a)). This is not 
an unreasonable model for metals provided v, is small 
and the rate of strain hardening is not an important 
factor. Otherwise, corrections must be applied for (1) 
the reduction in sheet thickness consistent with plastic 
deformation at constant volume? and (2) strain 

St 

cb, 

(e) 

FIG. 5. Examples of different distributions of the 
internal tension, 8. 

hardening. For example, if deformation is confined 
t,o shear on a single 45” slip plane, displacements in the 
y direction must be accompanied by a reduction in the 
load-bearing cross section of the sheet given by 2v. 
Consequently, if Y’, defined as the true flow stress, is 
constant (e.g. Y’ = Y), the internal tension S, 
opposing the opening of the crack, must diminish 
from a maximum value Y at z = a. 

S(x)= Yp] (9) 

t In considering displacements and strains, the following 
simplifying assumptions consistent with constant volume 
deformation and the DM model are made: 

E = F, = err ez = 0; v = vy = v),, q, = 0; 

s 

m 

vuy = &v(Y) dY = f 

m 

&z(Y) dY. 
0 0 

This is shown schematically in Fig. 5(b). If the mate- 
rial also strain hardens, then: (1) Y’ = Y’(E) where 
E is the strain and (2) the displacement is distributed 
over a finite volume-a spectrum of strains is now 
encountered. The reduction in the load-bearing cro8s 
section is (1 - E), and the maximum reduction 
(at y = 0) correspond8 to the maximum strain E*, 

s(S) = Y’(E*)[l - &*] (10) 

Several points, therefore, emerge about the veriable- 
internal-stress case : 

(i) To establish S(s), the distribution of strain, 
E(Y), must be known. The model can only provide 
displacement8 ; strains must be inferred from other 
considerations or measured experimentally. For ex- 
ample, the displacement can be expressed in term8 of 
1 the width of the plastic zone, and B the average 
strain : 

2v = lC (11) 

Experiments to be described indicate 1 N t. Since 
E N &72, 

tE* 
VN- 

4 
(12) 

to a first approximation, and since v and x are related 
by an equation analogous to equation (4), 

S(x) - y’(v) 1 - f 
[ 1 (13) 

If the internal stress distribution can be defined, then, 
as shown in Appendix, Section 4, the corresponding p, 
o(x), and V(Z) can be calculated. 

(ii) Equations (10) and (13) show that the form of 
S(x) is similar to a load elongation curve. Since strain 
hardening and the variation of v with x are essentially 
parabolic, the initial part of S(x) is linear (see Fig. 
5(c)). A two-step function (see Fig. 5(d)) is thus a con- 
venient approximation of small yielded zones. This 
approximation, together with equation (13), was used 
to estimate the influence of work hardening on plastic- 
zone size for silicon steel (see Appendix, Section 5). 
The results, presented graphically in Fig. 6, indicate 
that the influence of strain hardening becomes 
significant for long cracks and high stress levels. 

Another simple approximation, which take8 into 
account the effect of work hardening on vet, is to 
modify the definit,ion of ,!?’ in equation (8) by replacing 
Y with S, = S,,=,,, the flow stress corresponding to 
the maximum strain at the crack tip. This simple 
approximation neglects the Rauschinger effect. 

The form of S(x) at high stress levels is illust,rated 
in Fig. 5(e). In this case, the instantaneous average fl 
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Relative Applied Stress, T/Y 

FIG. 6. Effect of work hardening on the relation between 
applied stress and plastic zone size. (1) Uniformly dis- 
tributed internal tension; ‘(2) two-step distribution 
(S,/Y = 1.20, p1 = 0.5pa); (3) two-step distribution 
(S,/Y = 1.33, &’ - 2.0,pr); (4) varying distribution 
simultating wor hardemng, (a) c/t = 6.25, (b) c/t = 25.0. 

can serve as a useful approximation of the distribution, 
e.g. equation (2), 

P rrT _ 
L = se0 - - 1 
C 28 

where 

9 Ui-F 
w- 

2 
(14) 

and U and F are the ultimate tensile strength and 
fracture strength, both expressed in terms of engineer- 
ing stress. 

(iii) The shape of the plastic zone consistent with 
the mechanism of deformation will not necessarily 
correspond with the shape prescribed by the DM 
model. This could be taken into account by modifying 

the geometry of the DM model-replacing the slit by 
some other shape-but the refinement may not 
warrant the added complications. 

The main problem, to be resolved by experiments, 
is the extent to which approximations inherent in the 
DM model impair the accuracy of its predictions. 
Dugdale has already shown that the model gives a 
reasonable picture of the plastic-zone size in mild steel. 
The experiments described in t,he next two sections 
show that measurements of plastic-zone size and 
crack-tip displacements for silicon steel are also in 
accord with the theory. 

EXPERIMENTAL PROCEDURE 

Studies of locally yielded zones were carried out on 
large notched test coupons fabricated from 3 y0 silicon 
steel (Si 3.31, C 0.04). The coupons (overall length 
8 in., with a 4 x 2.5 in. gage section, and with centrally 
located edge slots 0.25 in. deep and 0.006 in. wide), 
derived from &in. thick plate previously warm rolled 
40% and stress relieved, were machined to thick- 
nesses from 0.232 to 0.017 in. After machining, the 
coupons were recrystallized at 875” C and slowly 
cooled. The test specimens were loaded to various 
stress levels, held at maximum load for about 5 set, 
unloaded, and later aged for 20 min at 150” C to 
decorate the dislocations. The stress-strain character- 
istics of this material in the annealed condition are 
shown in Fig. Al. The shape of the stress-strain 
curve is similar to that of a mild structural steel, but 
the strength level is higher, the lower yield stress 
Y = 62,400 psi. A complete summary of tests per- 
formed is given in Table 1. 

Two different techniques were employed to reveal 
the plastic zone and the strain distribution within the 
zone. The off-load transverse strain field was photo- 
graphed on an interference microscope. The inter- 
ference pattern with isostrain contours and the 
corresponding strain profile for Sample S-56 are shown 

TABLE 1. Summary of not,ch tests performed 

Specimen Thickness, 
number (in.) WY 

Zone 
type 

FMeasured 
(m.) 

p-calculated: 
(in.) 

p-calculated p 
(in.) 

s-57 
S-60 
S-58 
s-47 
S-48 
s-53 
s-55 
S-56 

0.200 0.52 Hinge1 ) 
0.195 0.81 Transition 
0.232 0.90 45”-Shear 
0.165 0.75 Transition 
0.128 0.90 45”-Shear 
0.060 0.78 45”Shear 
0.017 0.52 45”-Shear 
0.017 0.81 45”-Shear 

$11 = 0.072 0.12 - 
P-4 = 0.54 = p 0.28 0.58 0.40 
fR > 1.40t = p 0.60 1.35 1.20 

p = 0.38 0.48 0.44 
7 0.10 0.12 0.10 p 

p = 0.39 0.58 0.40 

7 Although, in this sample, yielding ww predominantly of the 45’-shear type, traces of pla&ic deformation of a hinge 
character were observed to the distance indicated. 

z Calculated from equation (1) assuming no work hardening. 
$ Calculated taking work hardening jnto account (Fig. 6 and Appendix, Section 5). 
I] See Fig. 11 for definition of PK. 



ACTA METALLURGICA, VOL. 13, 1965 

FIG. 7. Interference pattern with isostrain contours (top left corner) and the corresponding plastic 
zone revealed by etching, both for Sample S-56 (t = 0.017 in., T/Y = 0.81). x 17.5. 

5 

4 
v---r Sample 2vo =jcz d; 

s-55 1.4.ICT’in 
S-56 3.O.W in 

s-53 5.1 .kYin 
3. 

1 

FIG. 8. Crack-tip strain profiles determined from inter- 
ferometric measurement. 

y (inches) 

in Figs. 7 and 8. The straid profile was used to 

calculate v’ (VI= So_%@). 

Following this, the surfaces of the test pieces were 

electropolished and etched, utilizing the Morris pro- 

cedure,(16) to reveal the plastic zone, and then were 

reground to various depths, polished, and re-etched 

to delineate the zone on various interior sections. 

This method of etching, based on the preferential 

attack of individual dislocations, results in a gradual 

darkening of the surface as the strain increases to 

l-296. Beyond 2’36 strain the etching response 

diminishes, and above about 576 strain the material 

studied here was not attacked, probably because 

decoration was incomplete. Consequently, the tech- 

nique revealed both the extent of the plastic zone and, 

to some degree, the distribution of strain within the 

zone. The change in etching response is illustrated in 

Fig. 7 which shows a highly strained but unetched 

region close to the notch tip. A displacement v, can 

be calcula$ed from I,, the width of the etched region, 

and ge, an average strain, deduced from the etching 

response, see equation (11). Since 21, = v + (v - w’), 
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(b) 

(4 

FIG. 9. Plastic zones revealed by etching the surfaoe and midsecbion of notched coupons: 
(a) and (b) Sample S-57 (t = 0.200 in., T/Y = 0.52) (c) and (d) Sample S-60 (t = 0.196 in., T/Y = 0.81) 

(e) and (f) Sample S-58 (t = 0.232 in., T/Y = 0.90) 
Oblique illum~atio~. x 6.08. 
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the sum af absolute values of displrtcement incurred 
when the load is applied plus the reverse d~l~~ment 
produced by unloading, it can be combined with V{ 
from the interferometric measurement to give V, the 
on-load displacement, 

ZI, + v’ ‘UZZ- 
2 

(15) 

EXPERlMENTAL RESULTS 

The interpretation of plastic zones revealed by 
etching is complicrtted by the fact that yielding con- 
current with loading is superimposed on reverse fio~ 
during unloadtding. Still, a reasonable picture emerges 
of the effect of stress and plate thickness on the 
character of the plastic zone. Three types of plastic 
zones are observed (see Figs. 7, 9, and 10): 

1. ~~~e-~~~ zone. At low-stress levels the zone 
extends normal to the plane of the crack, and its 
form is essentially the same on all interior sections 
(see Figs. 9(a and b)). The shape of the zone is con- 
sistent with the idea that yielding occurs essentially 
by flow about hypothetical plastic hinge@‘) (see 

Fig. 11). The hinge-type zone ia also quahtatively -in 
accord with Jacobs zone-Shea ad~ul&tiom for plane 
strlGII.~s~ 

2. 45” &HH type zone. At high-stress levels the 
zone is projected in front of the crack in the direction 
parallel to the crack plane. As shown in Figs. 7(b), 
9(e, f), lO(d, e), this form beears 8 striking resemblance 
to the IN model. Etching the interior sections 
reveals that the mechanism of yielding in this case is 
shear on slabs inclined ~$5’ to the tensile axis, 
similar to necking of unnotched sheet coupons (see 
Fig. 1 I )_ As a consequence of the &“-shear nature of 
the yielding, the zone width on the surfer is spproxi- 
mately equal to the plate thickness; this is shown in 
Figs. 10(e) and 11(c). 

3. Transi2ion zone. At intermediate stresses, the 
zone appears in a. stats of trsnsition between the 
hinge type and the &P-shear type (see Figs. 9(c, d), 

W, b)). 
Measurements of the zone size (summarized in 

Table 1) are in accord with previous experience. Con- 
sistent with Tetelman,os) pli (see Fii. 11) for the 

FIG. 10. Plastio zones revealed by etching the surface and the midsection of notched ooupontr: 
(a) and (b) Sample S-47 (t = 0.165 in., T/Y = 0.75) (c) and (d) @ample S-48 (t = 0.128 in,, T/Y = 0.90) 

Oblique illumination. x 9.5. 

t= plastic zone size
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TABLE 2. Comparison of measured crack-tip displacement values with predictions of the DM model 

Derived from measurementst Calculated 

3r:1 

_... 

Sample 
number T/Y 1 CL s,, *,* % UC *0’S *,‘O %ll 

(in.) x (lo-’ in.) (lo-* in.) (lo-’ in.) (lo-‘in.) (lo-* in.) (IO-* in.) ,_ _.-_ 
s-55 0.52 0.026 3-4 4-6 

3”.: 
2-3 0.8 0.9 2.5 

S.56 0.81 0.044 4-7 lo-14 
2:1 

6-9 3.1 3.7 8.1 
s-53 0.78 0.063 3-4 18-24 6-7 2.6 3.1 7.0 

t The quantities l,,, &, and vcs are the average width, strain, and displacement, respectively, immediately in front of the 
slot as revealed by etchmg. vo6 = &$,. v,’ is derived from t,he interference pattern as described in the text. 10~ is calculated 
from v,, and v,’ via equation ( 15). 

z Calculated from equations (7) and (8) using: Y = 62,400 psi, E = 30,000,OOO psi, and c = 0.250 in. 
6 These values of the off-load displacement were calculated taking work hardening into account as described in paragraph 

(ii)“on p. 287 and p. 288. 
11 Calculated from equation (5). 

hinge-type zone of Sample S-57 is described by 

c-1 (secg- 1) w 

The extent of the 45”-sheer-type zone of Sample S-55 
is in good agreement with equation (2). Values for 
Samples S-56, S-63, S-48, and S-58 are somewhat 
smaller than predicted. Although better agreement 
is obtained when work hardening is taken into account 
(see Table l), a discrepancy remains. This could be 
related to departures from the infinite plate solution 
(likely when the plastic zone covers more than 
20-30% of the sample cross-section area) and to the 
fact that the DM model only approximates the shape 
of real zones. 

The results summarized in Table 2 represent the 
first attempt to check displacement values predicted 
by the DM model. As shown, both the onload and 
off-load crack-tip displacement values derived from 
the etching response and the interferometric measure- 
ments are in reasonable accord with the theory. Work- 
hardening corrections do not improve the agreement 
in z!‘, values for Samples S-53 and S-55; in both cases 
the maximum strain is small, and the Bauschinger 
effect could be more important than strain hardening. 

On the basis of these results, it appears that the 
DM model offers a useful description of (a) shape, 

B 

I 

a 
I- 

‘i,-+ 

(01 Hmge-Type (b) 45’ Shear-Type 

FIG. 11. Schematic drawing of the type of deformation 
associated with (a) the hinge-type and (b) the 45”~shear- 

type plastic zone. 

(b) size, and (c) displacements of a. 45”~shear-type 
plastic zone. Two points bearing on the general 
applicability of the model should be kept in mind : 

(i) First, the state of stress must be substantially 
plane stress. The 45’~shear mode will be constrained 
until the stress acting on regions a distance t/2 above 
and below the crack centerline, y = 0 (see Fig. 11) 
exceeds the yield stress. Yielding at this distance 
first becomes possible when 

pH> f (17) 

and this condition should approximately mark the 
beginning of the transition from the hinge-type to the 
45’~shear-type zone. The configuration begins to 
approach a narrow, tapered DM-model zone when 

p -4t (18) 

since the zone width is wt. Limiting conditions for 
the various types of zones, formulated by combining 
equations (18) with (2) and (16) with (17), are sum- 
marized in Table 3. These conditions are consistent 
with the experimental observations. 

(ii) The 45”-shear zone has, so far, only been 
observed in steel. In fact, the Stimpson and Eaton(6) 
theoretical calculations for plane stress do not predict 
a 45”shear zone, but a shape with much more “hinge” 
character. Even when the bulk of the deformation 
is of the 45”shear type, the silicon steel exhibits 
traces of deformation at distances y > t/i? (see Fig. 7 

TABLE 3. Limiting conditions for zone occurrence 
_- ____ _.__ 

Condition Dominant, zone 

Hinge type 

i7T 
sex -- - 1 

a Y 
Trsnsition 
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and pH for Samples S-60 and S-58 in Table l), in 
keeping with the calculations. 

The discrepancy between the Stimpson and Eaton 
calculations and the behavior of steel may be related 
to the choice of yield criterion (von Mises, as opposed 
to Tresca, in the case of the DM model), or to the yield 
point effect.(ls) Until this point is resolved, the safest 
assumption is that the 45’-shear-type zone is one of 
several modes of relaxation possible under plane 
stress. 

IMPLICATIONS FOR FRACTURE 

Since it is both quantitatively meaningful and 
simple to handle, the DM model is especially useful in 
dealing with fracture. It can approximate the stress- 
strain-rate environment in front of a propagating 
crack.(15) It may have application to fatigue, since 
it can deal with loading and unloading. Finally, the 
DM model can be used to treat crack extension. In 
this case, the predictions of the model complement 
accepted theory and experiment and for this reason are 
outlined below. 

Equation (6), for the crack-tip displacement when 
T/Y < 0.6, can be written 

T= (19) 

and, in this form, compared with Irwin’s basic con- 
dition for crack extension, 

(20) 

In this case, T* is the critical stress for crack exten- 
sion, and K, (the fracture toughness) is an empirical 
measure of the material’s resistance to cracking.t20) 

The fact that equations (19) and (20) have the same 
form implies that K, is related to v, and can be 
calculated directly, 

K, = (~v,*YE)~‘~ (21) 

where v,* represents the crack-tip displacement at 
crack extension. 

The connection between v,* and K, was first recog- 
nized by Wells,(21) and an expression similar to 
equation (21) has been derived by Bilby et ~~1.o~) 

Since K, and Y are material constants, the quantity 
v,* must also be constant. The constancy of vu,* can be 
related to invariance on the part of sc*, a critical 
maximum crack-tip strain, via equations (11) and (12). 
Two mechanisms of crack extension can be related 
to a specific strain level: 

1. Ductile fracture. Ductile fracture by the process 
of voids coalescing(22) might be expected to occur just 
in front of the crack tip when the maximum strain at 
this point reaches a level comparable to the reduction 
in area of an unnotched coupon. 

E,* = RA (22) 

The crack then grows a small increment, and the 

maximum strain must increase further 
a& * 

( 1 
0 

a, T,Y > OJ 
see equations (5) and (12). Since the strain at the 
crack tip is already beyond the capabilities of 
the material, an instability is inevitable. Locally, the 
origin of such failures is ductile fracture, but they 
are frequently classified as brittle when the failure 
stress is below the stress level for general yielding. 

As shown in Table 4, KC values, calculated directly 
from equations (12), (21) and (22), for 4330 steel and 

TABLE 4. Comparison of measured and predicted values of the fracture toughness K, and gross failure stress T* 

Material 
Critical 

crack length, 
(inch) 

K,, (ksi 1/ in.) T*, (psi) 

Measured’**) Calculated 0 Measured@*’ Calculated 11 

A. Low stress levels, T/s < 0.71 

43307 2-10 300 420 
2219-T87f 5-13 110 99 

B. High stress levels, T/L? > 0.77 

43307 0.5 190,000 200,000 
2219-T87$ 0.8 57,000 58,000 
2219-T87$ 1.4 49,000 53,000 

t 4330 steel data:‘as) 
t = 0.140in., E = 3O,OOO,OOOpsi, Y = 189,OOOpsi, 
E, = 6%. 

U = 223,000 psi, s = 206,000 psi, F = 178,000 psi, RA = 45 %, 

$ 2219-T87 aluminum data:‘as) 
t = O.lOOin., E = 11,OOO,OOOpsi, Y = 59,OOOpsi, U = 69,OOOpsi, s = 64,000 psi, F = 56,000 psi, RA = 30x, E, = 7 %. 

Q Equations (12), (21) and (22). 
11 Equations (12), (23) and (24). 

Y-tU g&=7. 
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2219-T87 aluminum are reasonably consistent with 
experiment,(B) considering the approximations made. 
If the relation between v,* and E,* were known more 
precisely, even better agreement might be obtained. 

2. Plastic instability. Another possibility is that the 
plastic zone become unstable first, and that ductile 
fracture (and crack extension) follows in the wake of 
the instability. This idea, which was recently pro- 
posed by Krafft,cU) can be formulated using the DM 
model. As shown in the Appendix, 
instability condition is approximately 

Section 6, the 

Figure 12, a plot of the criterion of equation (23), 
shows that considerable unloading is tolerated at low 
stress levels (e.g. T/f? < 0.7), but the plastic zone 
becomes unstable as a result of a small decrease in 
S, when the stress is high (e.g. T/g > 0.7). Con- 
sequently, plastic instability is the more likely 
mechanism of crack extension at high stress if the 
material is reasonably ductile. 

According to this picture, v,* and E,* associated with 
plastic instability (and failure) decrease as the stress is 
raised. Since equation (21) is not valid at high 
stresses, a simple relation among KC, T*, and c cannot 
be derived. However, the value of E,* at instability 
can be estimated (see Appendix, Section 6), 

, and U and F 

FIQ. 12. Criterion for plastic instability of s DM zone. 

are the ultimate tensile stress and fracture stress 
(engineering stress), and E, and ej are the correspond- 
ing strains (expressed as reduction in area). Equations 
(24), (12) and (23) together fix the value of 2’ at 
instability. As shown in Table 4, failure stress values 
calculated in this way are in good accord with actual 
measurements and consistent with the apparent 
decrease of KC observed at high stress levels, i.e. 
T/Y > 0.8.(~) 

CONCLUSIONS 

1. For edge-slotted silicon steel, local yielding is 
predominantly of the plane strain plastic-hinge type 
until the extent of the yielded zone is about equal to 
the sheet thickness. Further deformation, under 
plane stress conditions, proceeds by a 45“~shear mode. 

2. The general shape of the 45’~shear zone can 
approach that of the DM (Dugdale-Muskhelishvili) 
crack model. Predictions of this model are in agree- 
ment with measured zone size and displacement 
values for silicon steel, 

3. The DM model offers a relatively simple ex- 
pression of the stress gradient and can be used to 
estimate effects of work hardening and unloading. 
Calculations and experiments indicate that the off- 
load cracktip displacement approaches 25% of the 
on-load value at low stress. 

4. The DM model can be used to formulate the con- 
ditions for crack extension. Failure stress values and 
the fracture toughness, K,, calculated in this way from 
first principles, are in accord with experiment. 
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APPENDIX 

1. Previous work 

Using Muskhelishvili’s(i3) method, the normal 

stress, a, in front of a slit subjected to the stress 

system shown in Fig. 1 is found to be 

“g> = ( 
sin 28 

cos 2/I - e2a 
- $ 

I 
(Al) 

where T = applied stress, Y = yield stress, 

p = c/a, cash CL = x/a, 

CO8 

6,’ cash a 

Q = (sinh a)3 
(3[sinh aI2 + cash a sinh CI - 1) 

+ 6,’ (coth CC)~ 
[ 

1 - 
6Area(e2a - cos 28) 

sin 2j5 1 
6,’ cos /9 - tsinh aI3 Msinh aI2 + cash a sinh a - [cash a12) 

aBlea cos p 
1+ 

a,‘(1 - e2’ - B[sin /?I”) 

(sinh X)~ 2 sin/l ? 

and 

6,’ = 
4 sin 2/l ea 

(ePa - cos 2/?)2 + (sin 2/l)” ’ 

4 sin @( 1 + e”*) 

‘,’ = (1 + e2a)2 - (2ea cos b)” * 

The other terms of equation (Al) are defined in Fig. 1. 

To avoid the infinity at CL = 0 (x = a), the coefficient 

of coth a must vanish : 

B = 5 5 = arc cos (c/a) (A21 

2. Stress analysis for uniformly lauded slit 

Equation (Al) was programmed for a digital com- 

puter and a and Q determined for 792 combinations 

‘0 5 IO 15 20 25 30 

Strain (%I 

I I I I 
.2 .4 .6 6 1.0 

Relative Distance Ahead of Crackpq 

(b) Tension -Distance Curve ’ ’ 

FIG. Al. Conversion of stress-strain curve into tension- 
distance curve. 

of a and /?. It was found that Q was negligibly small, 

except for values of a so small as to introduce round- 

ing off errors in the computer (x/a < 1.0002 and 

T/Y < 0.006). It can also be shown by series 

approximations that Q approaches 0 as u approaches 

0. We have concluded that Q can be ignored, and that 

a 
- = 1 + 1 arctan I sin 2p 

T IJ (eza - cos 2/l 
(A3) 

3. Displacement 

The displacement at any point on a slit under a 

uniform tension when the slit is not restrained by an 

internal stress is 

(k+ l)aTsin8 
v= 

41u 
(A4) 

k is the function of Poisson’s ratio, Y, where k = 

(3 - v)/(l + Y) for pl ane stress. The displacement at 

a distance, c, from the center of such a slit is 

vu, = 
(k + 1)cT tan j3 

4/J 
(As) 

since c/a = cos 8, and 8 = /l. 

The displacement equations for the relaxed slit of 

the DM model have been calculated by Goodier and 

Field,(14) and are found in the body of the paper. In 
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particular, the critical displacement for an internally 
stressed slit (see Fig. l(a)) is 

w 

To determine the stress, T,, producing the same dis- 
placement in a slit of the same length in the absence 
of an internal stress, (A6) is substituted into (A5) 

- = 2 cot p In set /l TR 
Y ?r 

(A7) 

4. Stress and plmtic-zone size for arbitrarily loaded slit 

Since all terms in the Muskhelishvili formulation 
which involve derivatives of 6, and 6, do not appear 
in equation (A3), expressions for a slit subjected to any 
arbitrary combination of internal. and external loads 
can be derived easily. For example, the stress 
distribution in front of the slit of Fig. 5(d) can 
be found by the summation of three solutions (a = 

Qi + 62 + 0s) : 

(1) External tensile stress, ui = T coth a (A8) 

(2) Uniform internal pressure, -S,, applied to the 
regions 

]a1 > ]z( > Ic] : 0, = 2 {2b,[coth a - l] + 8&3i)) 
?I 

(A9) 

(3) Uniform internal pressure (S, - Y) applied to 
the regions 

lol > I4 > ( ICI + IPII 1: 03 

= Se{2/!12 [coth a - l] + &#l,)} (AlO) 

where S, = -2 arctan 
sin 2s 

e2” - co8 28 

Setting the coeficient of coth a equal to 0, results in 
the restriction, 

p = (Bi - B,P, + P2Y 

and the solution 

(All) 

8 (B) : = 1 + -A$ (S, - Y) - 
T 

w (A19 

Keeping the same boundary conditions (S = S, 
at p = ,I& and S = Y at b = 0), but letting S(p) now 
be an arbitrary function of /?, equations (At) and 
(A9) can be added to 

~3 = z Ly (V[coth a - 11 + SAC/%} dS@), @lOa) 
e 

to give u and the restriction, 

(Alla) 

The displacements for an arbitrarily loaded slit can be 
obtained by replacing Y in Equation (4) with 

5. A met?wd of simulating the effect of work hardening 

Consider the material whose stress-strain curve is 
given by Fig. Al(a). Assume that E,, the strain at 
the crack tip, is 8%. For a given value oft (0.08 in.), 
the displacement at the crack tip can be calculated if 
it is assumed V, = s&/4 = 1.6 x lo4 in. For other 
points in the plastic zone, the displacement can be 
found from Fig. 3 and the relation E/E, = v/v,. Since 
each strain will correspond to a flow stress on Fig. 
Al(a), the tension-distance curve (Fig. Al(b)) can be 
calculated for a given T/Y. For ease in further com- 
putation, a two-step stress distribution, which simu- 
lates the calculated one is found by matching areas A 
and B (Fig. Al(b)) and the stress distribution in front 
of the plastic zone, the plastic-zone size, and dis- 
placements found by the method outlined in Section 4. 

To determine the solid lines on Fig. 6, the displace- 
ments (vJ corresponding to the various strains were 
calculated from equations (11) and (12) with t = 
0.08 in. The two-step distribution was replaced by a 
uniform distribution and T/Y found from Fig. 4. 
Although each solid line was calculated for a specific 
crack length and sheet thickness, it applies to any 
specimen with the same c/t ratio (see equations (11) 
and (12) and (A6)). Plastic-zone sizes for $ in. cracks 
in thicknesses other than ‘0.08 in. were found by 
determining c/t and interpolating between the curves 
of Fig. 6. 

6. Plastic-zone instability 

If the applied stress is held constant, but the tension 
S (reflecting the yield stress of the material) is allowed 
to vary, the rate of change of the equilibrium zone 
size is given by 

a In p 
- = 
alnS r 

-(seo$ - l)-l($sec$tan$) (A13) 

It is necessary to postulate a variable S when we con- 
sider a zone loaded with nonuniform tension distribu- 
tion, S(x), which is to be represented by a uniform 
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s cc+ P) 
average tension S = l/p S dx (see Fig. 5(e)). If 

e 
the tension at the crack tip, S,, changes, the cor- 
responding change in plastic-zone size is easily seen 
to be 

aln p -S 

a=EZ= 
(Al4) 

If the stress-strain curve is falling, i.e. &‘,/ap < 0, 

and S, < S, the rate of increase in plastic-zone size 
predicted from equation (A13) may be larger than 
can be t,olerated by the conditions of equation 
(A14). Thus an instability results when 

!$!t > (se,T$ - l)($$Eeogtan$J_l(Al5) 

The crack-tip strain at plastic instability can be 
estimated by noting that the relation between Y’ 
(true stress) and E* (reduction in area) is approx- 
imately linear beyond the point of necking. Together 
with equation (lo), this .leads to a simple parabolic 

relation between E* and the tension S (S is equivalent 
to the engineering stress in a tensile test). The 
equation of the parabola with a vertex at U, E%, and 
passing through F, q is 

E*=E,‘+jH(y) W6) 

where H = U(E~ - eJ2/(U - F), and U, Ed, and F, 

&r are the engineering stress and strain at maximum 
load and fracture, respectively. The following approx- 
imation 

s-s u-s 
s 

w 

u (A17) 

is reasonable, particularly for high-strength materials 
exhibiting little work hardening. Consequently, the 
value of E,* corresponding to a critical value of 

(Al81 


